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Abstract. The “sparse representation”-based tracking framework gen-
erally considers the testing candidates and dictionary atoms individually,
thus failing to model the structured information within data. In this pa-
per, we present a robust tracking framework by exploiting the dual group
structure of both candidate samples and dictionary templates, and for-
mulate the sparse representation at group level. The similar samples are
encoded simultaneously by a few atom groups, which induces the inter-
group sparsity, and also each group enjoys different internal sparsity. In
this way, not only the potential commonality shared by the related can-
didates is taken into account, but also the individual differences between
samples are reflected. Then we provide an effective optimization method
to solve our formulation by two stages: thresholding and computing with
the accelerated proximal gradient method. Finally, we embed the dual
group structure model into the particle filter framework for visual track-
ing. Extensive experimental results demonstrate that our tracker achieves
favorable performance against the state-of-the-art tracking methods.

1 Introduction

As one of the most active research topics in recent years, sparse representa-
tion (SR) has been widely investigated in numerous practical fields (such as face
recognition [1], image restoration [2], object tracking [3] and so on), and achieves
quite satisfactory performance. The fundamental assumption of the SR frame-
work is that testing samples from each class reside on a low-dimensional linear
subspace which is spanned by the training samples belonging to the given class.
Therefore, every testing sample can be approximately represented by a set of
training samples (dubbed dictionary) with the sparse constraint.

Tracking can generally be categorized into generative methods (e.g., [4], [5], [6])
and discriminative methods (e.g., [7], [8], [9]). As a generative tracking model,
SR has been extensively studied in the past several years (e.g., [10], [11], [12]).
In the “sparse representation”-based tracking framework, the samples collected
from the first frame and subsequent tracking results are often directly used as
the dictionary atoms, and then the ¢; minimization problem attempts to seek for
a sparse representation of the testing sample by selecting a few columns of the
dictionary. However, treating the dictionary atoms individually suffers several
disadvantages [13], [14]. Due to the ignorance of the underlying commonality
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shared by dictionary atoms, it tends to make selection based on the strength of
individual column rather than the strength of groups of similar atoms. Thus, in
the SR framework, it is prone to select only one atom from the group and does
not care which one is selected.

In the tracking problem, the dictionary enjoys the group property due to
the temporal continuity and appearance similarity. For one thing, the tracked
object usually undergoes small motions between two consecutive frames. For
another, as time proceeds, the target may share similar appearance with that
in some previous time. By clustering the dictionary atoms into several groups,
we can represent a candidate with a few groups, rather than individual atoms.
The active groups include semblable templates with the testing candidate, and
representation based on multiple templates contributes to more robust tracking.

Many of current tracking algorithms are based on the Particle Filter (PF)
framework, in which hundreds of particles are drawn based on the state of the
previous frame and used to depict the appearance of the tracked object. In these
methods, the SR method is straightforwardly applied to each testing sample for
obtaining the sparse coefficients, in which both dictionary atoms and candidate
samples are treated to be individual. Although this manner is simple and easy
to be implemented, it is not very satisfactory as it completely ignores the struc-
tured information within dictionary atoms and within candidate samples, and
it is also computationally expensive by verifying a large number of candidate
samples individually. To consider the potential relationships among candidates,
Zhang et al. [5] design a SR-based tracker based on the ¢3 ;-norm, which sparsely
codes all candidate samples simultaneously. The regularizer based on ¢3 ;-norm
encourages all samples to share the same sparsity pattern and exploits the un-
derlying relationships among different candidate samples. However, since there
always exist obvious differences between candidates, this compulsive constraint
may lead to undesirable results. Because of the densely sampling strategy, the
appearance of some candidates may be very similar, and therefore we can divide
candidate samples into some disjointed groups. To reveal the common charac-
teristics among samples in a group, they are encoded jointly and represented by
the same atom groups. In addition, we adopt the ¢; norm to account for the vari-
ation between individuals, thereby inducing sparsity within group. Finally, the
subgroup with the minimum reconstruction error is selected and the weighted
sum over all particles in this selected group is regarded as the final state, which
would lead to more robust and stable results than only picking one candidate.

In this paper, we propose a novel tracking formulation exploiting the group
structure of both candidate samples and dictionary atoms, which we name Dual
Group Structure. The structured information within candidate samples consid-
ers the potential commonality shared by the related samples, ensuring that data
with similar appearance are encoded jointly and bringing large gains in terms
of computational efficiency. The structural information within dictionary atoms
encourages the grouping effect of coefficients, leading to the selection of a group
of atoms which come from the same set rather than an individual atom. More-
over, the sparse-inducing regularizer yields sparsity at both the group and atom
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level, that is, not only a few groups of atoms are active at a time, but also each
group enjoys internal sparsity. In this way, samples from the same class will
share group properties, but will not necessarily share the full active sets as they
are not identical. The solution to our model can be achieved by using two basic
stages: thresholding and computing. Finally, we embed the proposed dual group
structure model into the particle filter framework for visual tracking, and adopt
challenging image sequences to evaluate the proposed tracker. The experimen-
tal results demonstrate the effectiveness of the proposed tracking algorithm in
comparison with other competing trackers.

Contributions: The contributions of this work can be summarized into three
folds. (1) We exploit the underlying structured information of similar candidates
and similar dictionary atoms, and formulate the sparse representation process
at the group level. Each sample group is represented by a few atom groups,
and inside each atom group only a few members are active at a time. By using
this manner, it not only makes full use of the commonality shared by data
from the same group, but also takes the differences between individuals into
consideration. (2) We provide an efficient optimization procedure by using the
Accelerated Proximal Gradient (APG) method. The solution process includes a
matrix thresholding and a vector thresholding, naturally yielding to the desired
inter-group and intra-group sparsity pattern. (3) We design a generative tracker
based on the proposed dual group structure model. Numerous experiments show
that the proposed tracking algorithm achieves favorable performance against
many state-of-the-art trackers.

2 Related Work

Group Sparse Coding: In recent years, the group property in the SR frame-
work (often called group sparsity) has drawn interesting attentions (such as [15],
[16], [17] and so on), where dictionary atoms are often divided into several dis-
jointed groups. Given these group memberships, the task is to seek for a solution
where a query sample is represented by only a small set of the groups, rather
than a few atoms. Yuan and Lin [13] first propose the group lasso criterion for
this problem, which exploits the sum of £3-norm to set most of group coefficients
to be exactly zeros. While the group lasso method can provide a sparse set of
groups, it fails to consider the sparsity property within each group. To model
both sparsity of groups and within each group, Friedman et al. [18] present the
sparse group lasso by adding an additional ¢;-norm regularization term. This
model achieves the effect of promoting group selection while at the same time
leading to overall sparse feature selection. Based on this theory, several works
focus on the practical applications to computer vision. Elhamifar and Vidal [19]
cast the face classification problem as a structured sparse recovery problem, the
goal of which is to approximate the testing sample by using the minimum num-
ber of blocks from the dictionary. Zhang et al. [20] utilize the group sparsity
properties in feature selection for the image annotation task, which leverages
both sparsity and clustering priors to prune the features. Liu et al. [21] use a
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dynamic group sparsity scheme to exploit temporal and spatial relationship for
object tracking, which can be solved by a two stage optimization approach. How-
ever, all these approaches sparsely code the testing samples individually and do
not consider the latent similarities among different samples, thus will causing
heavy computational load and the loss of structured information among data.
Simultaneous Sparse Coding: Another line of group coding, dubbed simulta-
neous sparse coding, offers a solution that involves the potential relation among
samples by coding all testing data jointly. Based on the assumption that features
or data within a group are expected to share the same sparsity pattern in their
representations, a mixed /3 ;-norm is employed to make all the column vectors
of the coefficient matrix look alike. Mairal et al. [2] jointly decompose groups of
similar patches on the dictionary and combine the non-local means and sparse
coding approaches to image restoration within a unified framework. Zhang et
al. [5] employ mixed norms to enforce the joint sparsity and learn particle repre-
sentations together to improve the tracking performance. Chi et al. [16] propose
the affine-constrained group sparse coding and extend the sparse representation
framework to classification problems with multiple inputs. However, these meth-
ods treat the dictionary atoms individually, and thus cannot lead to sparsity in
group level. Furthermore, the constraint of forcing these similar yet not identical
samples to have the same representations is relatively strong.

Our Work: The proposed formulation takes advantage of the structural con-
straints of both dictionary atoms and testing samples. On one hand, instead
of considering the atoms as singletons, we divide the atoms into groups, with
a few of groups active at a time. On the other hand, multiple similar samples
are encoded simultaneously, requesting that they all share the same active set.
Besides the common characteristics, the sparsity regularizer within each group
is added to account for the intrinsic differences between individuals.

3 Problem Formulation

Given a set of observed samples X = [x1, X2, ..., X,,] € R™*", where each column
x; can be the vectorized image or extracted feature vector, the task is to encode
these samples by a dictionary D = [d;,ds, ...,d;] € R™*F (the column vector
d; denotes the i-th atom of the dictionary D). By solving some optimization
problems, the coefficient matrix S = [s1, 83, ..., 8y] € REX™ can be obtained as the
encodings of X, with one column corresponding to one sample. Recently, many
sparse-inducing regularizers have been proposed in the literature (e.g., [15], [22]),
and most of them are based on the sparse-promoting property of the ¢; norm.

In order to achieve group sparsity, we can suppose that the k atoms are
divided into G groups (classes). For ease of notation, we use a matrix D to
represent the set of atoms within the g-th group, and adopt a matrix S to
stand for the corresponding coefficients. Then for each individual sample x;, the
sparse group lasso criterion [18] is formulated as follows:

g g g
.1
min 2 [x; = Y DOsPIE+ 0187 ll2 +de DI, (1)
L 2

g=1 g=1
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Fig. 1. (a) The dense sampling strategy in particle filter framework. (b) The collected
candidate samples. We can see they are of strong correlations, and thus can be divided
into several groups.

where || - || and || - ||; denote the f5-norm and ¢;-norm respectively, parameters
A1 and Ag control the balance between the two regularization terms.

It can be seen from equation (1) that the sparse group lasso method takes the
structured information within the dictionary by using an f2-norm constraint on
the coefficients of each group. However, it fails to model the relationships among
data samples (i.e., to exploit the structured information of similar samples in X),
which is not a good candidate method to solve many vision problems (such as
visual tracking). In the “particle filter”-based tracking framework, the candidates
are usually densely sampled according to the object’s state in the last frame.
Thus, these candidate samples are of strong correlations (i.e., have sufficient
structured information), as shown in Figure 1.

In order to exploit the structured information of similar samples in X, we
also classify the n data samples into £ groups (classes) based on some criterion.
For example, if data is image patch, each group may be the set of patches in a
particular image; if instances are human faces, then each group may consist of
facial images from one person under different illumination, pose and expression
conditions. Likewise, we denote X() as the submatrix correlated to the I-th
group and sparsely code one group data jointly. Thus, we can define our objective
function as

g g g
1
min | X" Y DISOIL+ 0 Y ISDllr+ 2D S9N, (2)
g=1 g=1 g=1

where || - || F is the Frobenius norm of matrix. The sum of the F-norm regularizer
induces the sparsity in group level, while /1-norm encourages sparsity in an
individual level. Tt means that samples in X() share group properties as they
are from the same class, but will not share the active sets since they are not
identical.

We thereby obtain a collaborative sparse model, with the cooperation to
identify the class labels by all samples, and the freedom at the individual level
inside the group to adapt to each particular image. The objective function in
equation (2) is the sum of three convex functions, and thus, the optimization
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Fig. 2. (a) Sparse representation where both testing samples and dictionary atoms are
treated to be individual, thus there are no relations among the learned coefficients. (b)
Dual group structure model where the coefficient matrix enjoys group sparsity and in-
group sparsity. Not only a few of groups are selected, but also in each group, minority
of elements admit non-zero values.

problem (2) is a convex one. In Section 3.1, we will provide an effective solution
to this problem. The sparsity patterns of SR and our model are illustrated in
Figure 2.

Here, we note that Zgzl IS@; =3 IIsilli- When A\; = 0, the grouping
effect is neglected, then equation (2) reduces to the original sparse representation
(lasso) problem [23]. If each individual sample is treated as a group, the opti-
mization problem in equation (2) reduces to the sparse group lasso problem [18].
In addition, when Ay = 0 and all dictionary atoms are treated as a single group,
the equation (2) turns into the multi-task learning problem with the mixed ¢7 ;-
norm [5]. Therefore, we can conclude that all three above-mentioned problems
can be viewed as special cases of the proposed formulation.

3.1 Theoretical Calculation

Since equation (2) with the ¢;-regularization is non-differentiable at zero, the
standard unconstrained optimization methods cannot be applied directly. In the
following, we develop an optimization method based upon coordinate descent
to solve this problem. The formulation can be separable with respect to S,
and thus we can update 89 individually by fixing other group coefficients. For
each subproblem, the solution can be obtained from two stages: thresholding
and computing.

Formally, the submatrix S is obtained by solving the following optimization
problem:

!
st = argmin 5[|R — DZ|7 + M| Z[|r + A2[1 2], 3)

where R = X() — D itg DS0) is the residual.
Thresholding: We first check whether the elements of Z are all zeros, which
means the corresponding atom group is not activated. Let f = %HR — DZJ|%,

then the subgradient of the function |R — DZH; + M| Z|| p + X2||Z]|; with
respect to each Z;; is:

VI4+MP;+ Ty, YVi,j (4)
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where matrices P and T are the subgradient matrices of F-norm and ¢;-norm
of Z respectively. The element P;; = Z;;/||Z||r if Z is not a null matrix, and
otherwise P is a matrix satisfying |P||r < 1. Similarly, the element T;; =
sign(Z;;) if Z;; # 0, and T;; € [—1,1] if Z;; = 0. Moreover, when Z = 0, we can
obtain that the first term V f = —A,;;, where A = D'R.

To achieve group sparsity, we focus on the case where Z is a null matrix,
then a necessary and sufficient condition for Z to be zero is that the system of
equations,

Aij = M Py + XT3y, Vi, g (5)

has a solution with ||P||z < 1 and T;; € [—1,1]. With some mathematical
manipulations, we can determine this by minimizing the function of T

J(T) = (1/)\12) Z(AU — )\QTij)Q = ZPZZJ (6)

with respect to Tj; € [~1,1] and then check if J(T) < 1. The minimizer is easily
seen to be

- (7)

>1

o

T = 2 A A?'

N sign( )\;)7 | ey

and we can compute J(T) by equation (6). If J(T) < 1, then we directly set
Z = 0 and proceed to solve for the next submatrix.

Computing: Now in the case where J(T) > 1, we can see that equation (3)
is actually the sum of a convex differential function (the first two terms) and a
separable penalty, and hence we can employ the APG method to efficiently solve
this convex optimization problem. As compared to traditional projected gradient
methods, the APG method achieves an O(;5) residual from the optimal solution
after ¢ iterations with quadratic convergence [24]. Specifically, APG proceeds the
iterative update between the current coefficient matrix Z; and an aggregation
matrix V;. Each APG iteration consists of two steps: (1) a generalized gradient
mapping step that updates Z; with V; fixed, where in general an analytic solu-
tion is needed to ensure the materialization of APG, and (2) an updating step
that promotes V; by linearly combining Z;,; and Z,.

(1) Gradient Mapping: Given the current estimate V, we obtain Z; 1 by solving
the following equation:

1 3
Ziy1 = argmin o||Y = H||E + MY, (8)

where A = )y and 7 is a small step parameter. Denote g = 1|R — DV,||% +
M|V F, then

H=V;,—-nVg

\ 9)
=V,—yD"(DV, - R) — nAlm.
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We decouple equation (8) into several disjoint subproblems, one for each row
vector z":

i R NI
741 = argmin 5y — bl + Ally* . (10)

Each subproblem is a variant of the projection problem unto the ¢; ball. The
optimization can be solved by a soft-thresholding method and the solution is
obtained as z{,; = S;(h?), where Sj is the soft-thresholding operator defined

as Sj(a) = sign(a) max(0, |a| — A). Note that the max(-) operator induces the
sparsity within group, and samples in the same group enjoy different sparsity
patterns.

(2) Updating: We update V; as follows:

Vg1 =Zep1 + appa( V21 — Zy), (11)

— =1
Qi

where o, is conventionally set to t%} We summarize the algorithm of the APG
computing stage in Algorithm 2.

Suppose the number of samples in group g is py. The computational com-
plexity in thresholding step concentrates on the multiplication of matrices, i.e.,
the calculation of matrix A, and thus the complexity is O(mnp,). While in the
second stage, the computational complexity is dominated by the gradient com-
putation in equation (9) and the soft-thresholding operation in equation (10).
Similarly, the complexity of equation (9) is O(mnp,), while that of equation
(10) is O(npgy). Thus the total complexity of one iteration is O((2m + 1)npy),
linear with respect to the group size pg, therefore the solution can be obtained
efficiently.

Our overall algorithm is summarized in Algorithm 1. The convergence is
achieved when the relative change in solution falls below a predefined tolerance
after several cyclic iterations.

3.2 Noise Handling

In the noisy scenarios, samples are often corrupted by noise or partially occlud-
ed. To deal with the unknown corruption, a set of trivial templates are added
after the dictionary as in the previous works [1], [3]. Then the occluded part is
modeled as sparsely additive noises that can take on large values anywhere in
the representation.

We employ the identity matrix I as the trivial atoms, and the corresponding
coefficient matrix is denoted as S(). The nonzero entries of SU) indicate the
pixels in sample that are corrupted or occluded. We regard all trivial templates
as an atom group and along with other groups solve equation (2) to obtain the
coefficients. In this way, a set of occluded samples can be represented by both
the related dictionary group of the same class and the trivial group.
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Algorithm 1: Learning dual group regularized sparse codes

Input: sample matrix X, dictionary D, sample group set {1,2,..., L}, atom group
set {1,2,...,G}, regularization parameters A1 and A2, learning step 7.
Output: coefficient matrix S.

1. Initialize S = 0.
2. Forl=1to L

3. Initiativly set g = 1.

4 Calculate R =X® -3, DYsVU) A=D'R.

5. Compute J(T) according to equation (6) and equation (7).

6 Check whether J(T) < 1. If so, set S9) = 0 and proceed to step 7 for the

next group directly. Otherwise go to step 6.

7. Compute S using Algorithm 2.

8. If g == G, reset g = 1, else update g =g+ 1.

9. Iterate the cyclic optimization for g = 1,2,...,G, 1,2, ... until convergence.
10. End

11. Return coefficient matrix S.

Algorithm 2: learning coefficient with the APG method

Input: residual matrix R, dictionary D, warm start Z, learning steps 1 and A
Output: Coefficient matrix Z.

1. Initialize t = 0, oy = 1.

2. If Z is null matrix, set Zo = 1, else Zo = Z. Vo = Zo.
3. While not converged do:

4 Compute H according to equation (9).

5 Solve the subproblem equation (10) to obtain Zi1.
6 Set o1 = f-‘%

7. Update Viy1 by equation (11).

8 t=t+1.

9. End

10. Return coefficient matrix Z.

3.3 Visual Tracking

For object tracking task, the tracking results are usually directly used as the
dictionary atoms. Since the target object often undergoes various pose changes in
the tracking process, the dictionary covers diversity of the appearance variations
of the target. Therefore, these dictionary atoms enjoy the group structure of
the consecutive tracking results or the similar appearance at different time. We
cluster these atoms using K-means method. By sparse group coding, the correct
target sample is reconstructed by sparse grouped templates.

When the new frame arrives, large amount of candidates are drawn around
the target location in the previous frame. Individually treating them could be
computationally expensive. To explore the structural information of positions
and features among candidates, we also divide these samples into several disjoint-



10 Fu Li, Huchuan Lu and Dong Wang
ed groups according to their coordinates and appearance. Denote ¢ = [x,y,q "] "
as the extracted feature from a candidate, where x and y are the coordinates, q
is a response vector such as intensity, color or gradients, then the candidates can
be clustered by K-means or spectral clustering method. We can also add some
weights on the coordinates to adjust their contributions.

For each candidate group X, we compute the corresponding coefficient
matrix using equation (2), and obtain the reconstruction error only by the best
dictionary atom subset:

e(l) = min |[X® —DWsW |2, (12)
g

The best group with the minimum error e is then picked out. The weighted
sum over all particles in this group is taken as the final target location, where
the weight of each particle is inversely proportional to the reconstruction error.
We update the dictionary by replacing the old templates with the new coming
tracking results and re-cluster it every five frames. The occlusion handling strat-
egy in [12] is adopted to prevent the blocked part from being updated into the
dictionary.

4 Experiments

4.1 Sparsity Pattern

To demonstrate the effectiveness of the proposed method, we first conduct ex-
periments on the ORL face database [25] and examine the sparsity pattern of the
learned coefficient matrix. The ORL database contains 400 frontal face images
of 40 subjects under different pose and expression conditions. Each face image
is scaled to 48 x 48 pixels and normalized in the preprocessing. A subset with
half numbers per individual is collected to form the training set. Images with
the same labels are clustered into one atom group and these groups are arranged
in the order from label 1 to 40. Note that in the testing stage, the image is not
labeled one by one, instead we treat the testing faces of one subject as a whole,
and estimate the belonging of this group.

The sparsity patterns of all 40 subjects are illustrated in Figure 3(a) ordered
by the true label, with the red line indicating the group splitting line in each
pattern. In the ideal condition, the testing group is represented by only the atom
group of the same class, thus resulting in that the non-zero values concentrate on
the diagonal line from the overall point of view. For example, in the coefficient
relating to the first person, the elements corresponding to the first atom group
enjoy most large non-zero values, and thus this atom group admits the minimum
reconstruction error and shares the same label with the testing group. Due to the
presence of noise, there may exist non-zero entries in other groups. In addition,
the convergence curve is shown in Figure 3(b). We can see that our algorithm
could reach convergence smoothly after several iterations without vibrations.
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Fig. 3. (a) Illustration of the coefficient matrix of all 40 subjects in ORL face database.
The white entries indicate the non-zero values while the black ones represent zero
elements. (b) Convergence curve.

4.2 Tracking Experiments

In the implementation, each target is initialized manually by a bounding box in
the first frame. We resize each image region to 32 x 32 pixels for post-processing.
The parameters A1, A2 and 7 are set to 0.01, 0.01 and 0.1 in all experiments. As
a trade-off between effectiveness and speed, 600 particles are adopted and our
tracker is incrementally updated every 5 frames. The number of atom groups
and candidate groups are set to 5 and 10, respectively.

We evaluate the performance of the proposed method on sixteen challenging
sequences from [26] and our own. The challenges of these videos include partial
occlusion, illumination variation, pose change, deformation and scale change.
The proposed tracker is compared with twelve state-of-the-art algorithms includ-
ing the MIL [7], IVT [27], TLD [28], VTD [29], MTT [5], CT [9], ¢,-APG [10],
NDLT [30], LSHT [31], SCM [32], STK [8], PBT [33] methods. Both qualitative
and quantitative comparative results are presented below.

Table 1. Success rate. The top two results are shown in red and blue fonts respectively.

MIL IVT TLD VID MTT CT ¢;-APG NDLT LSHT SCM STK PBT OURS
Cary 0.27 1.00 0.86 1.00 0.38 0.27 1.00 1.00 0.27 1.00 0.28 0.39 1.00
David2 0.33 0.88 0.96 0.99 1.00 0.01 1.00 0.96 0.99 0.91 1.00 0.99 0.98
David3 0.35 0.61 0.18 0.53 0.56 0.32 0.05 0.67 0.75 0.58 0.68 0.57 0.98
Faceoccl 0.76 1.00 0.78 0.97 1.00 0.66 1.00 1.00 1.00 1.00 0.96 1.00 1.00
Skater 0.94 0.88 0.48 0.98 1.00 0.95 0.81 0.41 0.16 0.87 0.44 1.00 1.00
Crossing [0.99 0.23 0.52 0.42 0.23 0.99 0.25 0.82 0.44 1.00 0.96 0.99 1.00
Jogging 0.16 0.19 0.86 0.16 0.16 0.15 0.19 0.17 0.15 0.89 0.18 0.17 1.00
Seql 0.34 0.21 0.94 0.45 0.31 0.23 0.99 0.21 0.94 0.99 0.68 0.45 1.00
Singerl 0.25 0.94 0.46 0.95 0.35 0.25 1.00 0.48 0.25 1.00 0.26 0.23 1.00
Stone 0.28 0.51 0.23 0.62 1.00 0.21 0.83 0.14 0.29 0.95 0.60 0.41 0.97
Leno 0.53 1.00 0.82 1.00 0.98 0.97 1.00 1.00 0.79 0.99 0.78 0.92 1.00
Toystory 0.72 0.94 0.27 0.99 0.39 0.39 0.37 0.37 0.36 0.28 0.38 0.75 1.00
Walking 0.55 0.99 0.39 0.84 0.99 0.53 0.99 0.97 0.55 0.95 0.64 0.55 0.98
Walking2 |0.39 0.99 0.34 0.40 0.99 0.39 0.97 0.41 0.39 1.00 0.46 0.42 0.96
Mountainbike|0.58 1.00 0.26 1.00 0.95 0.17 0.83 1.00 0.99 0.98 0.86 1.00 0.97
Dog1 0.65 0.86 0.68 0.71 0.79 0.65 0.99 0.88 0.65 0.85 0.65 0.65 1.00
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Table 2. Average center error (in pixels). The best two results are shown in red and
blue fonts respectively.

MIL IVT TLD VTD MTT CT ¢;-APG NDLT LSHT SCM STK PBT OURS
Cary 60.1 2.9 - 12.3 37.2 234.1 16.4 6.0 272 3.5 276 124 3.1
David2 109 14 50 29 1.3 76.7 1.4 2.7 29 38 15 1.9 1.1
David3 38.2 529 173.0 61.9 65.5 69.5 233.4 52.8 50.9 64.1 54.6 66.3 5.5
Faceoccl 32.3 9.3 17.6 11.1 14.1 30.7 6.8 6.3 46 3.2 162 9.1 4.3
Skater 11.1 149 - 152 8.8 134 124 32.3 1184 17.5 22.5 8.9 5.9
Crossing 3.2 2.8 243 26.1 56.5 3.6 54.5 4.1 29.2 1.3 28 2.5 3.2
Jogging 136.6 130.2 6.4 118.0 153.5 130.6 42.2 52.1 150.5 12.1 129.7 114.6 6.2

Seql 48.8 111.7 7.9 45.1 87.8 52.4 5.5 87.6 13.4 1.8 17.1 343 4.7
Singerl 151 85 327 4.1 41.2 193 3.1 76 278 3.7 219 262 3.7
Stone 32.3 269 14.1 26.1 2.2 30.3 3.1 41.8 56 2.8 33 49 3.6
Leno 28.1 6.2 24.0 9.5 172 13.1 5.9 129 375 6.9 37.1 143 4.8
Toystory 34.5 17.4 - 10.4 59.4 472 68.8 56.3 67.4 68.2 64.8 29.4 10.1
Walking 34 1.8 102 58 29 6.9 1.9 1.8 55 24 46 83 1.4
Walking2 60.6 3.1 - 46.2 3.6 58.5 4.4 28.8 414 2.1 11.1 142 2.8
Mountainbike| 73.0 7.4 - 9.8 7.3 214.3 255 6.5 7.2 105 86 9.1 8.2
Dog1 7.8 3.5 4.2 11.0 3.8 7.0 3.7 3.7 6.8 7.1 57 6.3 3.2

Quantitative Comparison: We first evaluate quantitatively the performance
of the trackers mentioned above with the success rate criterion, which is defined
as the ratio of the successfully tracked frames. Given the tracking bounding box
Br and the ground truth Bg, if the PASCAL VOC score g;ggg is larger than
0.5, then tracking in the frame is regarded as successful. Table 1 presents the
success rate results, where a bigger value means better performance. We also
utilize the center location error between the tracking results and ground truth
to assess these trackers. Table 2 shows the average center error in pixels, where
the smaller the value is, the better the tracker performs. From Table 1 and 2,
we can see that our tracker performs favorably against other state-of-the-art
methods in terms of both criteria.

Qualitative Comparison:

Pose Change: The Toystory sequence is challenging for large pose deformation
and dusky background. The target toy exhibits different moves and the other
one also causes distraction to mislead the tracker. Most of other methods lose
the target after frame # 147. Since the dictionary in our model captures various
target poses and the group structure exploits the temporal information and ap-
pearance similarity, our algorithm could track the target successfully throughout
the whole sequence. In addition, the weighted sum of all promising candidates
contributes to the tracking robustness. In sequences Skater and Dogl, the ap-
pearance of the target changes dramatically due to the pose variation, resulting
in great difficulty for tracking. For all that, our tracker is able to catch the target
accurately all through. The PAT and SCM methods also do well in some cases
as they employ the part-based representations. The target faces in sequences
David2 and Leno experience out-of-plane rotation, causing the trackers to fail
easily. But our method is able to locate the target all through.

Partial Occlusion: In the David3, Jogging, Walking2 and Seql sequences, the
target is completely occluded by other similar objects or obstacles, making the
tracker easy to drift. We can see that our method performs better than other
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Fig. 4. Sampled tracking results on challenging image sequences. This figure demon-
strates the results of seven state-of-the-art tracking methods and the proposed method.
More results can be found in the supplementary material.

trackers in these cases, since we introduce the trivial template group to account
for the occlusion and use the atom group structure to take advantage of the
previous similar appearance information. In sequence Faceoccl, the tracked face
is blocked by a book from different directions. Because the object undergoes
little pose variation, majority of algorithms could track the target generally, yet
our method achieves a relatively smaller center error.

Illumination Change and Background Clutter: In sequence Carj, the car
passes under a bridge which blocks out the light, and in sequence Crossing,
the human is crossing the sidewalk from the black shadow. While in sequence
Singerl, the strength of the stage lighting increases all at once. Both the targets
in these sequences experience severe illumination change, causing the image pix-
els to change a lot. Our algorithm is capable of handling this challenge due to the
use of dual group structure, and locates the target more stably and accurately
than others. The target in the Stone sequence is easy to be distracted by other
stones of different shapes and colors with cluttered background. Likewise, our
method could achieve favorable performance.

5 Conclusion

We exploit the dual group structure information of both dictionary atoms and
testing candidate samples, and formulate the sparse representation at a group
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Fig. 5. Sampled tracking results on challenging image sequences. This figure demon-
strates the results of seven state-of-the-art tracking methods and the proposed method.
More results can be found in the supplementary material.

level. The commonalities shared by samples and the individual characteristics
among data are both taken into account through inter-group sparsity and intra-
group sparsity. In this way, the temporal continuity and appearance similarity
of tracking results can be made full use of. The objective function is solved efhi-
ciently by two stages, thresholding and computing using the accelerated proximal
gradient method. Then we devise a generative tracker based on the dual group
structure model. Instead of selecting only one best candidate, we estimate the
target location with the weighted sum over a set of related particles, which leads
to a more stable and robust tracker. Numerous experiments on visual tracking
are conducted with a wide variety of challenging factors, including partial occlu-
sion, pose variation, illumination change and background clutter. Experimental
results demonstrate that our tracker performs favorably against state-of-the-art
methods.
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